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ABSTRACT

This report describes the development and testing of a pneumatic-
regulated ammonia propellant feed system for spacecraft applications.

The system developed for the program consisted of a propellant storage

tank, a capillary tube heat exchanger bonded to the tank wall, a pneu-
matic pressure regulator, and a plenum tank. It was designed to operate

in a zero gravity environment. Under this condition, either liquid or
vapor phase ammonia could be expelled from the storage tank; however,

only vapor phase ammonia would be delivered to the propellant distribu-

tion system within a regulated pressure bandwidth. The feed system was
assembled and subjected to a one-month demonstration test, which included

operation over a range of ambient temperatures, flow rates, flow ON times
and duty cycles. All tests were operated at a nominal propellant deliv-

ery pressure at 20 psia within an ambient temperature range of 20°F to

100QF. Steady-state nropellant flow rates were in the range of 3 x 10-5
to i x 10- ib/sec. Operation in the pulse flow mode was performed with

duty cycles of i to 3 percent and flow ON,times of 503to 300 milliseconds
with flow rates during a pulse of 5 x i0 to I x i0 ib/sec. All tests

were performed with liquid and vapor phase ammonia leaving the storage

tank. The system exhibited the capability of maintaining a delivered

pressure within a + 5 percent bandwidth for all test flow conditions
above 40@F. The upper level of the bandwidth increased to approximately
10 percent during pulsed operation with flow ON times of 300 milliseconds

at temperatures below 40°F. This effect could be circumvented by increas-

ing the system plenum volume. During all of these tests, the delivered
propellant phase was vapor. The system demonstrated design simplicity

and performance capability similar to those of high pressure gas systems,

_,., but with the weight advantages of ammonia.

#
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i. INTRODUCTIONAND SU_£%RY

An ammonia feed system intended for zero-gravtt_ spacecraft appli-

cations has been deslgned, fabricated and tested under Goddard Space Flight

Center Contract NAg 5-21010. _monla iP _ storable liquid propellant with

_nly a moderate vapor pressure ar,d has _ _ molecular weight than most

of the gases used in high storage pressure systems. Because of ammonla's

high storage density at low pressures and high total impulse per unit w_ight,

ammonia propellant systems are considerably llghter than high pressure gas

systems. The object of this program was to utilize the advantages of

ammonia propellant in a feed system that was comparable in design

simplicity to a high pressure gas system.

The aunonia feed system cc_.sisted of a propellant storage tank, a

capillary tube heat exchanger bonded to the tank, and a pneumatic pressure

regulator. Since either liquid or vapor phase a_nonia could be exhausted

from the storage tank in a z_ro-gravity environment, the regulator/capillary

tube assembly controls both the propellant delivery pressure and the deliv-

ered propellant phase. Although the pneumatic pressure regulator can

accept either liquid or vapor phase ammonia from the storage tank, the

capillary tubes insure that only vapor phase ammonia is supplied to the

propellant distribution system. The capillary tubes are sized Jo that

they have sufficient heat transfer area with minimum volume for complete

. liquid vaporization under all flow conditions. A system schematic is
sketched below_

_+ -Flow Valve

_ Storage Tank Exchanger

_, The use of a regulator for flow control _epresents a simplification of the
_-_ am_nia feed system developed for the Air Force under Contract No.

AY33(615)-3729 and reported in Reference 1. The referenced system uti-

lized a valve actuated by a transducer through an electronic switch for ._

flow control.

|
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The pneumatically-regulated system was charged with ammonia and

operated for a one-month period at various propellant flow duty cycles

within an ambient temperature range of 20° to 100°F. This temper-

ature range corresponds to a saturation pressure range of 48.2 to 212

psia. The operating modes included rontinuous flow at rates of 3 x 10-5

to i x 10-3 ib/sec and pulse flow at duty cycles in the range of ! to 3

percent with ON-tlmes in the range of 50 to 300 milliseconds. The flow

rate during a pulse was in the range of 5 x 10-4 to i x 10-3 ib/sec.

Liquid and vapor phase ammonia was extracted from the storage tank during

these tests. The vapor pressure of the ammonia was sufficient to drive

the system so that no external pressurization was required. The system

_ demonstrated the capability of maintaining a pressure control band of

+ 1.0 psi around the nominal over a large range of ambient temperaturz3

and duty cycles and with either vapor or liquid exhaust from the storage

tank. During all required test conditions, only vapor phase ammonia was

_ discharged from the capillary tubes.

The results of the one-month demonstration test indicate that it is

possible to assemble an ammonia propellant feed system that is similar

" in design simpliclty_ in operational stability, and in regulation charac-._.

: teristlcs to those of high pressure gas systems. In addition, the demon-

stration system verified the weight advantage of ammonia over high pressure

•: gas. The ammonia demonstration system dry weight was 8.5 pounds for an

,;._: actual total stored ambient impulse of 3380 pound-seconds. The total

.... system weight wlth propellant was 42.3 pounds.

I

2
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2. SYSTEM DESIGN

The ammonia propellant system designed for this program Includes a

propellant storage tank, a two-phase flow pressure regulator, and a

capillary tube heat exchanger. It is designed to operate in the zero

gravity environment of space and supply vapor phase a_nonla propella_t

within a controlled pressure band. Liquid phase ammonia is stored in the

propellant tank. The tank volume not occupied by liquid contains satura-

ted ammonia vapor. The pressure regulator controls the delivery pressure

of the proFellant and the propellant flow from the storage tank. In a

zero gravity environment, location of the vapor-llquld interface within
L

: the storage tank is not predictable; therefore, either liquid or vapor

phase ammonia or both can be exhausted from the storage tank. Thus, in

order to control propellant flow, the pressure regulator must be able to

operate on either liquld or vapor phase a_nonia. When vapor phase ammonia

is leaving the storage tank, the vaporization process occurs at the

vapor-liquid interface within the tank. As the vapor is expan@ed from the

storage tank pressure to the delivery pressure, there is no phase change;

therefore, no propellant conditioning is required. When liquid phase

_, ammonia is leavinE the storage tank, a means must be provided to accomplish
h

_: the vaporization. A net flow of thermal energy into the liquid phase

- ammonia is required to achieve the phase change. The capillary tube heat

exchanger is Incorporated in the propellant system to provide this heat

transfer and phase change function.

2.1 System Requirements

...._. In order to determine the design characteristics of the propellant

system components, it is necessary to establish system requirements. These
i_
,_-: requirements include:

_.._ o Total propellant

_'i,! o 0peratln S temperature range "'
,_, o Propellant flow rate

o Propellant duty cycles

o Propellant delivery pressure

.°
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The basic requirements selected for the system were based on typical

spacecraft missions. However, analyses, performed to establish system

characteristics, indicated operational limitations which are discussed in

Section 2.2.

2.1.1 Original System Requirements

A list of the critical operating requirements for the an=nonia propel-

1ant system is presented in Table 1. These requirements were established

on the basis of the environmental and operational conditions encountered

on a wide range of spacecraft and missions. Results obtained in the

system thermal analysis indicated that the system was unable to maintain

high propellant flow rates without the addition of internal tank fins and/

or a heat source. Because of this, the system critical operating require-

ments were modified.

TABLE 1.

CRITICAL SYSTEM OPERATING CRITERIA

I. Propellant Storage Mass: 50 pounds

Spacecraft Interior: 20 - 100°F
, II. Operating Temperature Range - Spacecraft Exterior: 0 - 120eF

,: IIl. "Maximum Flow Range- Average: 4 x 10--4 Ib/sec
_' Instantaneous: 10-3 Ib/sec

':_. IV. Temperature Range During Maximum Flow: 50 - 100°Y

_,,_ V. Duty Cycle History - Acquisition: full propellant tank
Statlon-I_eeping: >SZ residual propellant

Station-changlng: >25Z residual propellant
: Attitude Control: continuous

,_ VI. Allowable Pressure Variation: +I0 percent

VII. Mechanical Environment - Vibration, etc: Titan III C

• Safety factor: burst pressure-2.2

_- VIII. Telemetry and Command: activation

._. isolation
• ' diagnosis

!_' 2.1.2 Modified System Requirements ,i

i_" A list of the modified system critical operating requirements is

presented in Table II. These requirements are more explicit with respect ._

to propellant duty cycles and flow duration. The tank size was decreased

to reduce cost and improve component delivery schedule. -_'

1970024697-014



TABLE 2.

MODIFIED qYSTEM CRITICAL OPERATING CRITERIA

I. Propellant Storage Mass: 36 pounds

II. Operating Temperature Range: 20 - IO0@F

llI. Flow Rate - Maximum (300 seconds): 10-3 ib/sec
Instantaneous: 10-9 lb/sec
Continuous: 3 x 10-5 lblsec

IV. Tem_,erature Range -

Maximum Flow: 40 - 100OF

Continuous Flow: 25 - 100°F

V. Duty Cycle History - Maximum Flow: Full propellant tank
Continuous Flow: >5% residual propellant

_ Pulsed Flow: 100% to 0 residual propella._t

VI. Allowable Pressure Variation: +_I0percent

VII. Mechanical Environment - Vibration, etc.: Titan IIIC

SafetF factor: Burst pressure - 2.2

IX. Telemetry and Command: Activation
Isolation

_ Diagnosis

i 2.2 SYSTEM THERMAL ANALYSIS

_ Thermal &lalyses were performed on the system to determine the time-

_ temperature history of the stored propellant under various flow demands and

_ with various quantities of stored propellant. The influence of thermal

_ radiation from an external heat source was also examined. The purpose of

_ these analyses was to determine the range of propellant flow duty cycles

that could be malutalned by the propellant system. The propellant storage
?

_ tank surface temperature history at high propellant flow demand was also

/-: determined. This information is required, in conjunction with the capillary

tube analysis, to determine maximum allowable duty cycles and flow on times

_ when liquid phase az,,onla is leaving the storage tank.

2.2.1 High Propellant Demand

_ _. For the original system requirements, the high propellant flow demand

_ was defined as a flow rate, i, of 4 x 10 -4 lb/sec. This flow demand would

be required for periods in excess of 6 hours for station changing maneuvers.

The thermal energy required to maintain this flow rate is approximately 226

watts. The first analysis was performed to determine the average stored

propellant temperature during flow with no heat addition. The analytical

expression describing this case is:

5
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dT

-M Cp d'-e" qv (l)

where M = mass of propellaJt in the storage tank

C = specific heat of the propellant
P

T ffi temperature

8 = time

qv = _ hv = heat to vaporize propellant

= propellant mass flow rate

h = propellant heat of vaporizationV

Solutions to equation (1) for several values of propellant mass in the stoz-

age tank are shown in Figure 1. The initial propellant charge in the tank,

M = I, was assumed to be 50 pounds and the thermal properties of the
O

ammonia used in the analysis were averaged over the temperature range of

0° to 100_F.

A second analysis considered the presence of an external radiation

heat source. The analytical expression describing this case is

dT

-_ Cp _-_ + qr = % (2)
-. where

qr ffiradiative heat input to the storage vessel

r qr = °FA(Ts4 - T4)

o = Boltzman constant

F = Gray body radiation factor

A = surface area of storage vessel

_, T - temperature of the surroundings
S

" T - temperature of the storage vessel

' Solutions to equation (2) for several values of propellant mass in the

_ storage vessel and for an initial temperature of 50OF are shown in Figure

2. The assumptions used in the solution to equation (2) were:

'_'_-" (1) The temperature of the surroundings is constant with time and •
_: equal to the initial storage vessel temperature.

_ (2) The storage vessel is a 17 inch diameter sphere. (50 pounds ofh
_.. aRonia)

:'= (3) The area ratio between the storage vessel and the surroundings

" is unity. -i

(4) The thermal emissivity of all surfaces is equal to 0.85.

i
|
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The results of the analyses of these two cases indicate that the dura-

tion of maximum propellant flow can be limited to several hours or less

when only the stored thermal energy of the propellant is available for vapori-

zation or when thermal radiation from the surroundings is the only additional

heat source. An even more severe restriction to flow tlmes occurs because of

nonuniform temperature distribution within the propellant. This will be

most pronounced when liquid phase ammonia is leaving the storage tank. In

this case, when the vaporizer is attached to the tank wall, the propellant

next to the tank wall will drop in temperature at a considerably faster

rate than the average propellant temperature. This places an addltional

limitation on the stored thermal energy available to vaporize the ammonia

propellant. To circumvent these limitations, an external heat source, such

as a heater element and/or internal tank fins must be incorporated in the

systeN.

For the modified system requirements, the maximum flow demand is 10-3

lb/sec, which is higher than the origlnal requirements; however, the required

flow time is only 300 seconds. The thermal energy required to maintain this

flow rate is 565 watts. The propellant storage tank has a capacity of 36

pounds. Solution to equation (1) at a full tank loading indicates that the

average propellant temperature will decay at a rate of leF per minute or

a total of 5°F over the 300 second flow period. These temperature values

will be proportionally higher wlth less a-,nonia in the tank; however, this
-s,

maximum flow will occur when the tank is at or near full capacity.

The minimum start temperature of the maximum flow rate is 40eF. This tem-

perature corresponds to a saturated an,,onia pressure of 73.3 psia. After the

300 second flow period in which the average temperature drops 5OF, the

saturated ammonia pressure is 66.3 psia. This pressure decay will not pre-

" sent a problem in the system's ability to ma/ntain the delivery pressure at

: the flow rate.
• .', j

::_ The basic limitation in determining the duration that the system can

= maintain the maximum flow rate is related to nonuniform temperature distribu-

tion in the propellant. When liquid phase propellant is leaving the storage !_

tank, it is vaporized in the capillary tube vaporizer which is in thermal

contact with the outer surface of the propellant tank. The tank vail, there-

fore, serves as a heat transfer fin for extracting thermal energy from the _

!
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stored propellant. The limiting case for extracting heat from the pro-

pellant is when liquid phase in in contact with the tank wall. Under this

condition, the absence of convection in the zero gravity environment re-

stricts total heat extraction from the propellant to conduction. The time

limit for the flow period will be determined by the tank surface tempera-

tuz? history during the flow period. The temperature history of the tank

surface can be determined by solving the heat conduction equation

V2T = 1 8T
a _8 (3)

V - Laplaclan operator

T = t - ti

t = temperatur_
l

tI = initial temperature

8 = time

a = thermal dlffuslvlty

If the propellant layer through which a major portion of the temperature

change occurs is thin, a reasonable approximation to the storage tank case

can be made by assuming slab geometry. Solution of equation (3) in slab

geometry with the boundary condition that the heat flux is independent of

.., time is

-X -- X

'r- exp -TerfcC (4>

where
q = heat flux per un._t area

x = distance in from the tank surface

_: k - thermal conductivity •

-_, At the tank surface, equation (4) reduces to

A solution to equation (5) corrected for tank wall contrtb_tion and using _

the nominal system parameters is shown in Figure 3. The propellant tank _

size, shape and weight for which the solution is based are described in _'_:

10 '_
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Section 5.2. The maximum temperature potentlal (t - ti) available for

the high flow demand maneuver is the difference between the propellant

temperature at the start of the flow and the propellant saturation tempera-

ture at the delivered pressure. However, not all of this temperature

potentlal is available as a!lowable wall temperature decay during flow. A

portion of the temperature difference is required for transferring thermal

energy from the capillary tube walls to the propellant flowlng in the tube_.

This temperature drop analysls and flow duration llmlts are in Section 4.1.

2.2.2 Low Propellant Demand

The low flow demand requirement includes flow ra_es equal to or less

than 3 x 10-5 lb/sec. These flow rates can be maintained continuously if

sufficient heat _17 watts) is transferred to the propellant tank from the

surroundings. Equation (2), with the following assumptions, describes this

condition.

(1) Temperature of the surroundings is constant -¢_th time and equal
to the initial storage vessel temperature.

(2) The storage vessel has the dimensions described in Section 5.2.

(3) The ar_a ratio between the storage vessel and the surroundings
: _s unity.

(4) The theruml ealesiwlty of all surfaces is equal to 0.85.

Under these conditions, with a starting temperature of 25eF, (minimum temper-

°' ture requirement), the equilibrium tank wall temperature will be 3°F. Tnls

_illbrium temperature will be independent of the ammonia phase leavlng the

tank. When the t3nk is filled with propellant, the time required to reach

equilibritmis approxisately 60 hours. With less than full propellant

_ loadinge, the time will be proportionally shorter. At the temperature

; differential of 22°F, all of the energy required for vaporization is supplied

• _.- by ra¢iation to the tank. If the temperature at initiation of flow is

above 250F, the equilibrium teuperature will be le_s than 22"F below the
/

starting temperature. The tank pressure at the minimum temperature of 3°F

is 32.7 ps£a. This pressure is sufficient to maintain the propellant flow _

rate (3 x 10 -5 lb/sec) at a delivery pressure of 20 pats.

1
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3. REGULATOR DESIGN

Control of the mmonia feed system pressure downstream of the capillary

tube heat exchanger requires a unique pressure regulator. High response

control of either liquid or gaseous az_nonia flowing into th_ capillaries

must be achieved. A hlgh order of shutoff reliability must also be attained

since no other shutoff provisions are included in the feed system. The

regulators developed in this program are speclallzed in design to meet these

basic requirements.

A single stage_ spring loaded, diaphragm regulator design was chosen to

meet the program requirements. A complete set of drawings of the final

regulator design is in Appendix I. The design emphaslses ease of assembly

and adjustment. An elastomer valve poppet seal was used to provide a simple,

* highly reliable, sealing capability. The seal also offers a hlgh tolerance

to particle contamlnation and good wear characteristics. The valving and

sensing arrangement adopted in the regulator design was dictated by the

need form lnlmumvolume at the capillary inlet and the requirement for

remote sensing.

3.1 PROTOTYPE REGULATOR

3.1.1 PrototFpe ReKulator Requirements

_ The general requirements for the regulator were -.8tablished by the physl-

cal and functlona._ characteristics of the system, coupled with developmental

needs. Highly tellable shutoff of the capillary tube inlet vlth a minimum

•!:/ of residue" volume was required. Remote pressure sensing wag demanded by the "

basic eyst,..m functions. Ksterials compatibility with gaseous and liquid

: ammonia wag necessary. Characteristics established for the prototype regula-

_+ tor were:

_;_ • _Justability over a regulated pressure range

_ • Asseubly characteristic8 allowing for easy assembly and dteassenbly ?

_ for replacebent of sensin K diaphragms, valve poppets and seats as _

necessary for component and system develop_nt.

_' • Minimum weight and envelope consistent with ease of assembly and other

desirable characteristics directed to a non-fltsht development _it.

13 |
.I
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The specific design requirements were:

a) Pressures Valve Diaphragm

Working pressure, psig 210 max 37 max

Proof pressure, psig 315 55

Burst pressure, psig 462 min 87 mln

Regulated pressure

Adjustable from 20 to 35 pslg

Regulation accuracy within +_5%over inlet pressure and flow
range

Lockup pressure

Within regulatlon accuracy, 0.6 psi maximum above callbrated
: regulation pressure

b) Flow

Maximum flow: 1 x 10-3 1b/set of ammonia at a minimum inlet

pressure of 66 psla.

Minimum flow: 3 x 10-5 1b/set ammonia at a minimum inlet pressure

of 54 psia.

c) Temperature

20 to 100"F

:_ d) Leakage

?' External: 2 x 10-5 scc/sec GHe total

_ internal: 0.3 scc/hr GN2

•"_! 3.i.2 Prototype Regulator Design

A cross-sectlonal view of the regulator is shown in Figure 4. Photo- :

_': graphs of the assembled unit and the disassembled components are shown in
>j

Figures 5 through 7. The relationship of the regulator to the feed system

_"'-.',,- is described in S_ction 5.0, Prototype Feed System, and is shown schematlc-
..'

"=.,_, ally in Figure 27.

_; Ammonia from the supply tank is introduced directly to the metering

_ valve, which consists of the elastomer seat poppet and a stationary metal

"-_ seat. The _onla flow enters the capillary tube assembly downstream of

the seat orifice. %

One of the ports to the diaphragm sensin 8 chamber is connected to the

downstream side of the capillary tubes. The other port was provided to

-. lb, ._

%
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to allow the option of either flowing from the capillary tubes into the

diaphragm sensin E chamber through one port and out the other, or dead-ending

a sensing line at one port and connecting a pressure sensor at the other.

Whenever the feed system pressure (sensed pressure) is lower than the

calibration pressure of the regulator, the regulator metering valve opens

and ammonia is free to flow into the capillary tubes. As the calibrated

pressure is reached and sensed by the diaphragm, the valve meters the flow.

If the flow demand to the regulator is stopped, the metering valve closes

and the regulator is at lockup. The downstream system pressure at this

condition is limited to 0.6 psi maximum above the normal metered calibration

pressure.

The design arrangement makes possible independent installation of the

diaphragm with the loading spring and valve parts of the unit. This is

illustrated in Figures 6 and 7. The parts constituting the diaphragm

assembly are shown in Figure 6, and the valve assembly in Figure 7. During

regulator assembly, the diaphragm portion (including the loading spring and

the valve shaft) is assembled first. The valve and plate, held by four

screws, are mounted on the regulator body. The shaft "0" ring and backup

disk are then installed. The poppet is mounted on the shaft and locked in

place by a set screw. The remaining parts and seals are inserted to complete

the assembly.

: The prototype regulator design includes an over-travel spring device at

the connection of the valve shaft and the loading spring plate. This allows

the poppet to bottom on the seat before the dlaphra_n back plate bottoms in

the regulator housing, and avoids overloadlng the valve shaft if a pressure

above the normal regulated value is sensed by the diaphragm. The ball

between the spring retainer end the backing plate provides for self-alignment

of the loading spring independent of the diaphragm. The ball also provides
y.

_. a low friction pivot allowlng rotation of the loading spring without imposing

• torque on the diaphragm when calibration adjustments are made. Self-alignment

of the valve shaft is also provided with the spherical surface of the over-

travel device centered at the pivot ball center.

1970024697-029



The diaphragm is a center-supported flat membrane design. The unsuppor-

ted working area has an outside diameter of 2-1/2 inches and an inside dia-

meter of 1-1/2 inches. A slight annular disk is formed in the working

annulus by preloading to 80 pslg. The membrane is manufactured from 0.003

inch annealed 302 stainless steel sheet.

The regulated pressure adjustment is made with a spanner wrench inserted

through slots in the valve end-plate, and engaging the notches in the adjust-

ment nut. The nut is rotated a notch at a time until the desired position

is reached.

Pertinent design features of the regulator are:

Seat orifice diameter 0.062 inch

Poppet stroke 0.020 inch

Diaphragm stroke 0.025 inch

Poppet shaft diameter 0.050 inch

_ Diaphragm effective diameter 2.0 inch

Diaphragm effectlve area 3.14 Inch2

Loading spring force at maximum design

regulated pressure (35 psid) Ii0 pounds

Overtravel spring force 2.6 pounds

Except for the seals and the spring, alumlnumand stainless steel are used

& throughout the design. All the major exterior parts are made of 6061-T6

%_ aluminum alloy. The seat, poppet and poppet shaft, the spring plate and

diaphragm plate are made of 303 stainless steel alloy. Both springs are a

high grade spring steel, stress relieved and preset. The "0" ring seals

: consist of EPR rubber (Parker compound E515-8). The poppet seal, made of

butyl rubber (Stillman Rubber compound SR 634-70), is molded in place and

bonded.

The weight of the prototype regulator is 0.92 pounds.

• _ 3.1.3 Prototype Regulator Test

•_ 3.1.3.1 Develo_nt Tests

_ The development tests of the prototype regulator were conducted to

optimize and verify the basic function of the diaphragm assembly, loading

springs, and the valve poppet seal. The test plan for these tests is

included in Appendix II of this report.

20
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Initial tests were run to establish an optimum diaphragm material and

thickness. After working with samples of both stainless steel and aluminum,

it was determined that stainless steel was the more practical choice from

the standpoint of handling, serviceability and material uniformity. A

0.003-inch thick annealed sheet of 302 stainless steel ultimately proved to

provide a good balance of flexibility and pressure strength. The operating

characteristics of the combined loading spring and diaphragm are shown

in Figure 8. The motion of the diaphragm was measured at a series of

pressure increments with the loading spring set arbitrarily to obtain motion

between 20 and 25 psig. Nonlinearity is less than 2% between 0 and 0.020

inch of motion. The pressure versus deflection rate is approximately 0.26

psi per 0.001-inch motion. Hysteresis for the assembly was not measurable

and must be assumed to be less than 0.002 inch. Once deformed at 80 psig,

no change in diaphragm dimensions was measured with repressurization to the

proof pressure of 55 psig.

Preliminary tests were conducted to determine the poppet valve functional

characteristics. Operating forces under all conditions were observed to

be less than one p _und, accounting for both friction and pressure at 210 psig.

Nitrogen leakage at 210 psig was not measurable over a one-hour period.

Following the subcomponent tests, the regulator assembly was completed.

_ Regulator performance was evaluated with the unit installed in a test setup

,': per Figure 79 of Appendix II. The adjustable regulated pressure range of

20 to 35 psig was found to be within the loading spring adjustment range.

_ A series of tests was conducted to observe the effect of inlet pressure

_/ variation on regulation. Data at settings of 20 to 30 psig are shown in

Figure 9. At a minimum inlet pressure of 50 psig, a pressure excursion of

approxlmately 1 psi is observable for both the 20 and 30 psig settings over

:_ the design flow range of 3 x 10-5 to I x 103 ammonia (2 SCFH to 68 SCFH of GN2).
,;£

. Further evaluation of the capillary restriction between the valving and

_ sensing functions of the regulator was considered necessary to evaluate the

: significance of these data during system operation. In view of the overall

: regulation band objective of +_i0% for the system, the regulator pressure

excursion appeared to be acceptable and testing was continued.

21
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The effect of throttling the capillary tube simulation valve indicated

the regulator function to be stable. Low frequency oscillations of the

order of 0.2 Hz could be detected when the valve was nearly closed, the

inlet pressure near minimum, and flow near minimum. Inasmuch as the

conditions were extreme and the characteristic not inherent in the regulator,

further evaluation could only be made on the actual system. No instabilities

could be triggered by sudden shutoff. Lockup pressure at maximum flow in the

referenced system was foLmd to be approximately 0.20 psi above the regulated

pressure.

Pressure drop tests of the regulator were run to establish the basic

characteristic with the valve full open. The data are shown in Figure i0.

The pressure drop through the prototype regulator was 3.7 psi at a 66 psla

inlet pressure and a flow of 68 SCFH.

3.1.3.2 DL_terlals Compatibility Test with Ammonia

The compatlbili_y of the poppet seal and seal bond with liquid and

gaseous annnonlawas tested by exposing two spare valve poppets to an ammonia

environment. These iuitlal test seals were molded of an EPR rubber (designated

TRW 8396-54-1). After a 72-hour exposure, the seals appeared unchanged. To

assure that the exposure had not affected the seals, one of the exposed

seals was installed in the regulator in place of the one prevlously tested

with nitrogen. It was found that the bond had failed and the seal moved

under pressure.

At this point Stillman Rubber Company was contacted to obtain a proven

bonding technique. A proprietary butyl compound (SCR 634-70) was recommended.

A repeated 72-hour preliminary exposure of butyl seals to liquid ammonia indi-

: cated good bond quality. Again, one of the exposed seals was installed in the

_ regulator. N_ bonding failures were experienced during subsequent testing.

_; 3.1.3.3 Acceptance Tests

The acceptance test plan is included in Appendix II. The acceptance

test procedure for the a_onia feed system pressure regulator, including

the test results fo_ the prototype unit, is presented in Appendix II1.

The regulated pressure (at ,dnimum flow) of the prototype regulator was

24 _
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I
' set at 20.05 psig. Maximum observed lockup pressure was 20.4 pslg. Internal

I leak rate with GN2 at maximum inlet pressure was measured at 0 see/hr.i
! After completing the acceptance test, the unit was installed in the pro-

totype feed system.

3.1.3.4 Ammonia Test Evaluation

Discussion of the prototype regulator performance with aunonia is

covered in detail under Section 5.3 as part of the feed system performance.

The pressure drop between the supply tank and the capillary tube inlet was

found to be greater than expected; however, this was improved to some ex-

tent by reducing the pressure drop in connecting lines and in the supply

: line filter. Ammonia pressure drop tests of the regulator at varying valve

positions indicated an increase of valve seat orifice size would be

desirable for the £11ght configuratlon.

An oscillating characteristic of pressure regulation was observed with

liquid flow tests of the system. This function was not unexpected due to

the inherent lags between the regulator valve opening or closing and the

resulting pressure increase or decrease in the downstream system. The

regulator response characteristic (_100 Hz) is much higher than the one-

half to one Hz characteristic observed with the system. Because the

amplitude of the oscillations was well within the desired pressure regulation

' band, the only concern with regard to the regulator would be the seal llfe

• requirements for a given mission.

Following the ammorla tests_ the regulator was functionally retested

_, and then disassembled and the parts inspected. No corrosion or wear was

evident in the area of the shafu seal and guide bearing. H_wever, all

,/ of the "0" ring seals had a tack/ness when uhe unit was first disassembled.

The characteristic disappeared after several hours with no apparent

: damage to the elastomer. The phenomenon appears to be attributable to the

i anlnonia that had permeated into the rubber and had subsequently reacted with
_: moisture in th_ air to produce a hydroxide on the "0" ring surface.

Recheck of the pressure calibration following the ammonia tests indicated

a lock-up pressure of 19.95 psid, which was 0.i psi lower than at the start

of the test.
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3.2 FLIGHT-TYPE REGULATOR

3.2.I Flight-Type Regulator Requirements

The specification requirements for the flight regulator were unchanged

from the prototype except as noted below. The primary change in design

approach was to emphasize reduction in weight and to select assembly

methods more suitable to flight qualification. The following design features

were chosen for the flight type regulator design:

1. The pressure adjustment range of the regulator remained within

20 to 35 psig.

2. The inlet tube connection was increased to a 3/16-inch

diameter tube size from the 1/8-inch used in the prototype.

3. The prototype bolted diaphragm assembly was retained.

4. Provision was made for evacuation of the ambient reference side of

the diaphragm.

5. A tube header was designed for attachment of the capillary bundle

to the regulator.

6. A means for structural mounting the regulator to the ammonia tank

was provided.

7. The weight of the regulator was reduced where possible, within

cost and schedule constraints of the program.

:: 3.2.2 Flight-Type Regulator Design

- The fllght-type regulator design is functionally identical to the

i prototype model. M/nor design changes were incorporated to meet the

requirements of Section 3.2.1. The regulated pressure adjustment range was

maintained at 20 to 35 psig. The regulator weight was reduced from that of

the prototype. A cross sectional schematic of the flight-type regulator

" is shown in Figure ii. Photographs of the regulator components in the

_i assembled and disassembled configuration are shown in Figures 12 through 15.

, i

The primary changes were made to provide a sealed ambient pressure

reference cavity, and to modify the poppet shaft seal configuration to be

adaptable to a bellows seal for future development. The diaphragm configura-

tion remains identical, although the sealing and clamping arrangement was

modified to seal the ambient reference cavity and to reduce the clamping

27

1970024697-037



I
CAPILLARYTUBEINLET

t

' il
i

VALVE HOUSING l

AJ_BIENTPRESSURE

REFERENCEPORT%
-- - = --- _ PROPELLANTINLET

". 1

!

!

"°' 11

: :c" II REGULATEDPRESSURE
:._'.;:."i " REFERENCEPORT

F

Ylgureii. FlightRegulatorCross Section

28 ,;_

1970024697-038



29

1970024697-039



3O

'" 1970024697-0'



31

1970024697-041



32

1970024697-042



flange outside diameter. The regulated pressure sensing connection was

changed to a single port with a face seal at the interface. No changes

were made in the loading spring and over-travel mechanisms.

The poppet assembly was modified to eliminate the 3et screw assembly

which would be undesirable in a flight component. The entire poppet was

Nicrobrazed to the shaft prior to the seat molding operation. The seals

and retainers were assembled on the shaft and a mechanlcal stop was then

silver brazed at a callbrated locatlon on the shaft tip. The assembly can

be seen in Figure 15. The silver brazed stop can be removed and rebrazed

if a shaft seal replacement is necessary. To accommodate this method of

assembly, the spring plate was changed to a two-plece assembly using a

, lock ring.

The seat and capillary header design was changed to a two-piece

arrangement. The seat was thereby made independent _f the capillary

connection. The seat diameter was increased from 0.062 inch to 0.070 inch

and the inlet tube from 1/8 inch to 3/16 inch to reduce valve pressure

drop.

The regulation set point adjustment method was changed to accommodate the

sealed ambient reference cavity requirement. The loading spring adjust-

". ment is made by loosening the valve housing clamp. The regulator body may

.... then be rotated without moving any of the connecting lines. Rotation _f

'- the regulator body causes rotation of the adjustment nut relative to the

": body. The nut Is driven through the square shank of the valve hous_g.

The design makes the adjustment possible with the regulator fully Installed

in the feed system. During adjustment, the valve body, loading spr_ng and

valve shaft turn as a unit, eliminating twisting between the shaft and valve
•" j

body. Another change to the adjustment design is necessary if a bellows

shaft seal is used in the future. A possible design confl_catlon with the
'7"

,:_.,. "O"-rlng shaft seal replaced by a metal bellows is shown in Figure 16.

_:_ ' The assembly method was changed for the flight unit, in that the valve

-' assembly was completed first. The valve was then inserted in the resulator

" body. The loading spring and spring plate were assembled with the lock

ring. The diaphragm and end plate were then installed.

33
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Pertinent design features of the flight regulator are:

Seat orifice diameter 0.070 inches

Poppet stroke 0.025 inches

Diaphragm stroke 0.030 inches

Poppet shaft diameter 0.050 inches

Diaphragm effective diameter 2.0 inches

Diaphragm effective area 3.14 inches2

Loading spring force at maximum design
regulated pressure 110 pounds

Overtravel spring force 2.6 pounds

Regulator weight 0.69 pounds

The fllght-type regulator materials are essentlally unchanged from

those used in the prototype. The poppet seal is Identical as are all the

"0" ring seals. At the time of selection, _he butyl compound (SR 634-70)

and bonding technique fJr the seal had shown no signs of deterioration in

the prototype configuration over an estimated total exposure of two weeks.

The exposure was with both liquid and gaseous a_onla on an interrupted

basis with intervenlng exposures to the air. At least half the time was

with liquid exposure. The poppet shaft guide insert was changed to stain-

less steel in place of the aluminum used in the prototype.. A dissimilar

metal interface was thus eliminated at the critlcal shaft seal location.

3.2.3 Flight-Type Regulars r Test

_ Preliminary tests of the fllght-type regulator were limited to a check

of characteristics and a comparison with the prototype regul_.tor data. No

differences were observed. The unit was calibrated and the acceptance test

: performed. Accepta.ce test results are presented in Appendix IV of this

report. The calibrati+n and pressure drop setups for the regulator

acceptance tests are shown in Figures 17 and 18. Resulated pressure at

minimum flow rate was set at 20.05 psig and the resulting lockup pressure was

_ 20.4 psig. No internal leakage could be detected w_-th GN2 at maximum

_ inlet pressure. The pressure drop measured across the regulator with the "

_, seat wide open is shown in Figure 10. In comparison to the prototype i

data, the flight-type regulator pressure drop at the maximm equivalent

nitrogen flow rate was reduced froa 3.7 to 1.9 psid. This was due to

the increase of the inl_ _- tube and seat orifice diameters. The re_tlator _
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pressure drop measurements were repeated with gaseous ammonia over a

range o_ diaphragm back pressure. These data are shown in Figure 19.

Discussion of the flight-tyle regulator performance with ammonia is

covered in Section 6.3 as part of the feed system performance.

#
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4. CAPILLARY TUBE HEAT EXCHANGER

The capillary tube heat exchanger is incorporated in the propellant

system to control the delivered phase of the propellant. Together with

the regulator, it also controls the delivery pressure of the propellant

feed system. The individual capillary tubes of the heat exchanger are

sized so that the propellant flow and heat transfer characteristics will

result in the transfer of adequate heat to vaporize any liquid phase in

the tubes. The capillary tubes are also sizeu for minimum internal vol-

ume to aid in control of delivered pressure.

4.1 CAPILLARY TUBE DESIGN AND ANALYSIS

The heat exchanger design analysis was based on the performance of

individual tubes, neglecting the presence of the regulator. However, the

pressure drop characteristics of the regulator were used in determining

the number of capilla_7 tubes required to meet the flow demand. The criti-

cal point used in sizing the capillary tubes was the minimum temperature

at which the maximum flow demand would occur. An imposed condition at

this point was that the flow regime in the tubes must be at the high end

of laminar flow with liquid entering the tubes. The tube length-to-diameter

ratio was adjusted so that there was sufficient area to transfer the te-
l

quired vaporization energy within a reasonable temperature differential.

The reason for selecting this critical point end condition was to achieve

stability of operation. If the instantaneous flow rate is above the cri-

tical point value, the flow w111 be turbulent and the potential for heat

transfer will increase _'apidly. For the condition of instantaneous flow

rate below the critical value, the potential for heat transfer decreases

at a slower rate than decrease in flow.

: The flow characteristics of the propellant in the capillary tubes were

. determined from the pressure drop across the tubes. The pressure drop as-

_.- soclated with a fluid flowing in a tube of constant cross-sectlonal area

is caused by: i) the friction force acting between the fluid and the tube

wall, and 2) fluid velocity changes. The pressure drop equation in

differentlal form is:
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-dP = 4_2 dv + 8_2

2D4g c _2D5g c fvdL (6)

where

P = pressure

= mass flow rate

D = flow tube diameter

gc = gravitational constant

v = specific volume

f - Fanning friction factor

L - length along flow tube

The first term on the right of the equation is the pressure drop caused by

fluid velocity change. The second term is the pressure drop caused by

friction. For single-phase gas flow, the integrated form of the'equatlon

is

PI-P2 = 4_2 iv2-vl) "L_2_L.I_2D4g c (7)

where

: L = total tube length

= vapor specific volume (average)

Subscript 1 refers to inlet conditions and 2 to outlet conditions. For

:_ liquid inflow, wlth phase change, an integrated form of the equation is:

: P1- P2" 4'2 [( -]%4gc v2 - vl) + 2 D (8)

where the subscript m refers to mean fluid property values.

These pressure drop equations along with the equations describing the heat

_ eransfer process were used in the tube sizing.

During operation, the heat transfer process in the capillary tube is a

result of forced convection. The basic premise of the capillary tube heat

exchange concept is that the tubes have relatively small diameters and

utilize the maximum available pressure drop. Thus, convection forces are

much greater than gravitational forces, and s_lution to the heat transfer
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process within the tubes will belndependent of gravitational forces.

The heat transfer process with liquid inflow is accompl_shed by a phase

change; thus, the heat transferred to the ammonia is through a combination

vapor and liquid film on the capillary tube wall. This combined-phase

film can be treated by using an effective thermal conductivity. For

laminar reglmeheat transfer,

hD
= --= Nusselt number

NNu kef f

where

NNu = 3.68 is derived on the basis of assumptions which most nearly

describe conditions encountered in the tubes.

h - heat transfer coefficient

D - tube diameter

keff- effective thermal conductivity

The effective thermal conductivity, kerr, can be approx_nated by

keff= O.3kv + O.7kE

where

k£ = thermal conductivity of liquid phase

" k - thermal conductivity of vapor phase

The condition that must be satisfied in the heat transfer analysis is:c

-: q - _ h v < h _D L (Tw- Tb) (9)

:, where

-, : q = heat to vaporize a_nonia

)_ _ = mass flow rate

h = heat of vaporization
• V

i. T - tube wall average temperature

_5:_ Tb - ammonia average temperature.

_: The results of the pneumatic and thermal analysis on individual capillary

: tubes indicated that tubes with diameter in the range of 0.016 to 0.018

inch and lengths in the range of 36 to 42 inches would satisfy the system

requirements. These results are based on a delivery pressure of 20 psia.

42

&

1970024697-052



At the critical design point, the flow rate with liquid entering the tube

would be in the range of two to three times the "_'_wrate with vapor

entering the tube at the same pressure drop. Under these flow condi-

tions, the temperature difference, (Tw - Tb) from equation (9), required

for complete vaporization of the ammonia is in the range of 26 to 36°F.

However, because of the presence of the regulator, the pressure drop

across the capillary tubes is not constant and the average flow rate when

liquid is entering the capillary tubes is the same as for the vapor

condition. With this condition, the temperature difference required to

insure vaporization of the a_onia is in the range of 12 to 15°F. The

•/n_ Jm propellant outlet temperature from the capillary tubes will cor-

respond to -16°F, which is the saturation temperature at the pressure of

20 psla. The corresponding bulk average propellant temperature in the

capillary tubes will be 0°Y under minimum heat transfer conditions. The

result of these values indicate that it is possible to reduce the tank

wall temperature to approximately 15°Y before the heat transfer requirement

could not be satisfied and llquld would exhaust from the capillary tubes.

At a maximum flow starting temperature of 40°F, the tank wall temperature

can only decrease 25°_ before incomplete vaporization will occur. This

temperature drop corresponds, from Figure 3, to a flow time of 412 seconds.

=_ With no pressure regulator, the total number of capillary tubes required
J

_ to maintain the flow rate of i x 10-3 Ib/sec at 35°F tank temperature (the

.i: lowest temperature attained during this flow) is in the range of 16 to 20,

: depending on _he tube diameter and length. However, because of the pressure

drop through the regulator, an addltlonal two to three tubes are required to

maintain the flow rate.

4.2 CAPILLARY TUBE EXPERIMENTS

•_ Flow experiments with individual capillary tubes (series 300 stainless

_' steel) were performed to verify the desisu calculations. The desisn calcu-

lations are approximations because of the uncertainties in the average value

of the propellant physx-al properties used, specifically for the condition

where liquid enters the capillary Cubes. Additionally, there are deviations _

in the internal diameter of the flow tubes from their nominal value unless

they are of preci8ion bore. A small deviation in diameter can have a large
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effect on mass flow rate, because the mass flow rate is proportional to the

diameter to the 2.67 power in the turbulent flow regime and the 4.0 power in

the laminar flow regime. Because of the cost and delivery schedule of pre-

cision bore tubing, the analysls was performed for a range of tube sizes, and

the selectlon of the tube size and number for the system was based on the

experimental results.

A schematic of the experimental assembly for testing the flow character-

istics of individual capillary tubes is shown in Figure 20. The capillary

tubes were bonded to a spherical ammonia storage vessel with a volume of

113 cu. in. The capillary tube bonding material was ECCOBOND 57C, a

silver doped epoxy, which is a product of Emerson and Comings, Inc. Either

llquid or vapor phase ammonia could be discharged from the storage tank into

the capillary tube. The capillary tube exhausted directly into a glass

tube section, which served as a slg.,tglass for observing the propellant

discharging from the capillary tube. The downstream or delivery pressure

from the capillary tube was controlled by a hand valve. The flow ra:s

through the capillary tubes was measured by collecting the propellant in a

calibrated volume and monitoring the time rate of pressure change in

volume. The pressure at the inlet to the capillary tube durlnE a test was

:: measured on a 0-300 pslg pressure gauge. This pressure waA varied by

changing the propellant temperature in the storage vessel. The downstream

.... pressure of the capillary tubes was monitored with a 0-20 pslg pressure ,

: gauge,

The capillary tubes that were used in the experiment had the following

dimensions:

" Internal Diameter (inch) Length (inches)

0.016 36.0

O.016 48.0

>"" 0.017 36.0
_

',.j" 0.017 42.0

: 0•018 42.0

L

This set of tubing covered the size range that was analytlcally deter-

mined to meet the system requlrements.
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4.3 CAPILLARY TUBE TEST RESULTS

Each o_ the four capillary tubes were tested over an Inlet pressure

range with both llquld and vapor as the entering -mmonla phase. The

results of these tests are shown in Figures 21 through 25. The downstream

pressure maintained during all of the test runs was 20 psia. During each

individual test run, the inlet pressure to the capillary tube decreased

over the tlme period required to have an adequate pressure change in the

calibrated volume for obtaining a flow measurement. Thus, the data

points represent the average inlet pressure over the flow time period. A

minimum flow time, independent of flow rate, was required to establish

equilibrium conditions in the dewnstream flow and monitoring sections.

Because of thls factor, the change in inlet pressure varied with flow

rate. With vapor inflow the variation in inlet pressure was less than

2 psi. Wlth liquld inflow, during which the flow rate was higher than

for the vapor case, the inlet pressure decrease during a run was in the

, range of 2 to i0 psi. This pressure change accounts for the larger scatter

in the liquld data, especlally at the higher tank pressures.

The discharge fluid from the capillary tubes, when liquld was the inlet

phase, was observed in the sight glass during the flow run. No liquid

phase a=_onia was noted in the ezllaust during any of the runs. There was,

however, an occassional fog in the discharge toward the end of those runs

i!_,: in which there was a large decrease In inlet pressure during the run. This
fog appeared perlodlcally and would persist for a fraction of a second.

Its presence generated a ne811Eible effect on the downstream pressure during

a run. Because it did appear at conditions chat were in excess of the sys-

tem requirements, it would not be generated during operation of the final-

,: ized system within design specification.

_' As a result of these experiments, the tube selected for the feed system

>:_. had an ID of 0.017 inch and a length of 36 inches. At a mlnimum tank:
"_ temperature for maximum flow rate of 35°F, the propellant saturation pres-

sure is 66.3 psia. The condition of vapor phase entering the capillary
/

tubes will determine the number of tubes reqtd.red to meet the flow demand.

z
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:. The pressure drop through the prototype regulator with vapor at the Naxi-

mum flow rate (Section 3.1.3.1) is 3.7 psi. Therefore_ the minimum inlet

, pressure to the -ap_11ary tubes (at the maximum flow rate) will be 63.6

psla. For the tubes selected, the flow rate _Ith this inlet pressure, from

' Figure 23, is 5.08 x 10-5 Ib/sec. The maximum flow rate of 1 x 10-3 ib/sec

can be maintained with 20 capillary tubes. This was the number selected

for the system.

,--.
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5. PROTOTYPE FEED SYSTEM

The prototype feed system served as a test vehicle for verification

of feed system performance and component interactions prior to fabrica-

tlon and assembly of the flnal flight configuration. Specific test

obJectlves included:

•Eval,_atlon of the interactions between the pressure regulator

and the capillary tubes

•Determination of system flow capacity and regulation limits

•Verification of operational stability

_i_ •Verification of the adequacy of the size and number of

capillary tubes

•Determination of the need for, and size of, a down.stream

; plenum volume

•Evaluation of heat transfer characteristics

_ The prototype system was fabricated to closely resemble the final

flight configuration in order to maximize the validity of the test

results.

_ 5.1 PROTOTYPE SYSTEM ASSEMBLY

:- The propellant storage tank for the prototype feed system was manu-

_-_ factured from hemispherical tank halves of 6061 aluminum. Each tank half

:5
_ii./ had a radius of 7 inches and a nominal thickness of 0.I0 inch. The tank

,:_ halves included a straight cylindrical sectlonp i.5 inches in length. The

_., end bosses were welded to the tank halves per MIL-W-8604. The welds were

_ X-rayed per MIL-STD-453 and then helium leak checked. The t_nk halves were

_. Joined by a girth weld and the assembly was solution heat treated and aged

_ • to T6 condition (per NIL-H-6088). The weld areas were X-rayed prior to,

'_i and dye panetrant tested after, the heat treatment.

_'" The tank was proof tested for 5 minutes at 320 pslg. Following the

i_ ' proof _est. the _k .a. cl.ened p-r _ Speclflcatlo_ 'R2-2. Lev.1 1. iThe volume of the prototype propellant tank is 1.03 cu. ft. A schematic

/, of the prototype propellant tank is shown in Figure 26. "_

?" 1

i
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The capillary tube bundle contained 20 tubes, each with an internal

diameter of 0.17 inch, external diameter of 0.033 inch, and length of

36 inches. Tube material was type 321 stainless steel. The capillary

• tubes were cleaned per PR2-2, Le___lO, and then flow checked to ascertain

full flow capacity for each indivldual tube. The _nterface between the

capillary tubes and the pressure regulator is shown in Figure 4. The tube

bundle end was brazed into a steel collar which in turn was soldered to

the regulator outlet orifice. The other end of the capillary tubes was

terminated in a drilled-out 1/4-1nch AN plug. The capillary tube assembly

was recleaned and flow checked prior to attachment to the propellant tank.

The capillary tubes were bonded to the propellant tank with ECCOBOND

solder 57C, a silver doped epoxy which has a high thermal conductivity

(greater than 200 BUT/ft2/hr/°F/in) and bonding strength (500 psi in

shear at room temperature). This is the same materla'_ that was previously

used on the capillary tube experiments and later on the dellverable

system.

The prototype system was assembled with two line,J feeding the

pressure regulator from the tank. This arrangement :allowed selection of

" either vapor or liquid withdrawal with the Lank m_ttained in a vertical

' position. In addition to the propellant tank and the pressure regulator,

'_ the assembly included a 113 cu.ln, downstream plenum tank, an inlet filter

_ to the regulator, a fill and drain valve on the p':opellant tank, pressure

transducers to monitor storage tank and regulated system pressure, and

. various propellant lines and shut-off and thrott._.e valves. The propellant

tank, pressure regulator and the plenum tank, to_ether with the associated

plumblng, were enclosed within a vacuum chamber durln8 the prototype test-

ing. A schematic of the prototype system and the test setup is shown in

Figure 27. Schematics of the propellant filter and the fill valve are

_ shown in Figures 28 and 29.

5.2 PROTOTYPE SYSTEM TEST RESULTS

._ The prototype feed system tests were conducted _rlth an initial

ammonia fill of 8.0 pounds. This is equivalent to 20% of full tank capa-

city at 70_F. Testing was conducted with vapor and llquld phase ammonla

supplied to the pressure regulator.

55

1970024697-065



Figure 27. Prototype System Test Schematic
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5.2.1 Vapor Phase Ammonia Test

The first series of tests performed with the prototype system was

conducted with vapor phase ammonia entering the regulator. The object

_ of these tests was to determine the regul--ted pressure in the plenum

tank as a function of storage tank pressure and propellant flow rate.

These tests were performed in the lower range of storage pressure where

the system's capability to meet the maximum flow demand Is most critical.

The results of these tests are shown in Figure 30.

The design specification for feed pressure control, as outlined In

the program work statement, is + i0 percent. Thus, at a nominal operat-

lug pressure of 20 psla, it would represent a lower regulated pressure

level of 18 psla. One of the system desi&n parameters is that It be

capable of maintaining the.-_rlmum required flow rate of 0.001 Ib/sec at

a minimum tank pressure of 65 psla. Thls is equivalent to a tank temper-

ature of 350F and corresponds to the case where the maximum flow demand

i8 initiated at a tank temperature of 40°F, continues for 300 seconds,

and causes the tank temperature to drop 5°F. The data indicate that the

- prototype system was -t short of meeting thls requli'_::_,ent.The minimum

tank pressure where the maximum flow rate could be ,_i:_alned at the

required delivery pre:/surewas 70 pals.

7"

Special tests were conducted to determine if it was possible to

decrease the decay In regulated pressure at hif, h _'_r,._ rates and low

storage tank pressure. Independent pressure d_cp measurements were per-

_ formed across the capillary tube-regulator orlfice combination and
I

: comp&red to those obtained from the sin$1e tube test. These are shown in

Figure 31. At a flow rate of 1 x 10-3 Ib/sec and an inlet pressure of 66

psia, there is a 12 psi difference in the pressure drop data of the tube-

_;. orifice combination test and the single tube _perlaants. This 12 psi

_. differential occurs in the reKulator orifice and the interface cavity

" '" between the capillary tubes and the regulator orifice. This resulted in a

decision to increase the diameter of the orifice and the length of the

interface cavity in the flight type design to reduce this pressure drop,

Preliminary tests indicated that the decay in regulated p_eosure below

the uaainal can be limited to I psi at the minimum ttnk pressure and

uaminun flow rate.
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5.2.2 Liquid Phase Ammonia Test

The second series of tests was performed with liquid phase ammonia

entering the regulator. The average pressure regulation level was only

slightly affected by both tank pressure and flow rate. The average

regulated pressure was 19.5 psia, except at flow rates less than 10-4

lb/sec, in which case the pressure remained near that of regulator lock-

up (20.5 psia). The regulated pressure exhibited oscillations at flow

rates in excess of 5 x 10-4 lb/sec. These pressure oscillations had a

frequency of approxlmately 2 Hz. Amplitude increased with increasing

flow and also with decreasing tank pressure. Typical pressure regulation

: profiles at several flow rates and tank pressures are shown in Figure 32.

The maximum peak-to-peak amplitude of the pressure oscillations at a

regulator inlet pressure of 120 psia was 1.0 psi, while at 66 psla the

amplitude was 2.0 psi. The mean regulated pressure, along with the

regulated pressure band, is shown in Figure 33 for various flow rates

_ and tank pressures.

The pressure oscillat{ons with liquid entering the regulator are

the result of two factors. One is the presence of liquid in the capil-

• lary cubes. The effect of this liquid is to cause a pressure rise in the

,: downstream plenum after regulator lock-up. The pressure rise resulting

_- from vaporization of residual liquid in the capillary tubes at regulator

•"-_ lock-up was 0.5 psi. This was the maximm, value observed durlng the

.(_ entire test series and is within the range predicted analytically. The

... -other factor producing the oscillations in the regulated pressure is

inertia in the regulator poppet. This effect can be seen from the

nature of the pressure oscillations. The oscillations are maximum at the

_ highest flow races and lowest cank pressures. Under these conditions,

the regulator poppet has maximum movement in order to maintain the flow

_: rate. The poppet travel necessary to maintain flow rate was reduced in
m _

_ the fLight-type regulator by decreasing the pressure drop as prevlously

mentioned. This, therefore, reduced regulator inertlal effects.

•- Two long duration tests were conducted wlth liquid phase ammonla
'c

entering the regulator. The first was for a duration of 150 seconda,

inltlated at a tank temperature of 67°F. The second was for a duration

62
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CASEI

TANK PRESSURE_ 115 PSIA

A --_-._99_Vk- FLOW -_0.0006 LB/SEC

., B _ FLOW = 0. 0008 LB/SEC

C _FLOW _ 0.(11110L_SEC
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of 300 seconds, initiated at a tank temperature of 61°F. Flow rate for

each case was 90 percent of the 1 x 10-3 Ib/sec maximum. There was no

evidence of liquid ammonia leaving the capillary tubes during these runs.

This was concluded from the regulation characteristics of the system and the

pressure rise at flow termination. Pressure rise at the termination of the

runs was about 0.5 psi above the lockup pressure at initiation. The average

tank temperature decreased by 6°Y during the first sequence, and 12@F during

the second. The tank loading was only 17 percent of full capacity for these

tests, and the two runs were conducted with only a brief time period between

them.

: 5.2.3 Test Conclusions

The pressure regulation characteristics exhibited by the prototype

system were within the original program design goal of 20 + 2 psia. Wlth

the exception of minor deviations, the tests demonstrated that the system

has the capability of regulating pressure to within a range of _+ 1.0 psi

: for either vapor or liquid phase ammonia entering the regulator. With

minor modifications to _he flight-type regulator, the delivel'able feed

system was expected to have this capability. A 300 second duration test
2

• with liquid withdrawal from the tank was performed with a flow rate of

_: 9 x 10-4 Ib/sec° There was no indication of liquid ammonia emerging from

the capillary tubes.

• _J_.:
.":_- Because of the excellent performance of the prototype system, the

design goal of the flight-type system pressure band was changed to + i psi.

,: This control limit represents a pressure regulation band of +5 percent at a

nominal delivered pressure of 20 psla.

._'"
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6. FLIGHT-TYPE FEED SYSTEM

6.1 FLIGHT-TYPE SYSTEM ASSEMBLY

The flight-type feed system closely resembled the previous described

prototype system. M/nor modifications were incorporated in the pressure

regulator, propellant tank and the capillary tube assembly designs.

These are discussed in subsequent paragraphs. A schematic of the feed

system is shown in Figure 34. The individual components are identified

in Table 3.

The feed system components were assembled onto a support frame which

: was suspended at its center line by a pair of bearings attached to a

holding frame. One of the bearing shafts was geared to an electric motor

drive which could be remotely operated to rotate the propellant storage

tank end allow either vapor or liquid ammonia to enter the pressure

regulator. The outlet llne from the plenum tank extended through the

i_ center of a bearing shaft end terminated at a bulkhead fitting located

: on the base frame. To allow for rotation of the feed system support frame,

a flexlble stainless steel line was used to extend the feed 1Jm.e from the

_ center of the bearing shaft to the bulkhead fitting. The assembled fllght-

_; type feed system is shown in Figures 35 and 36.

_- 6.1.1 Propellant Storage Tank

•" :_ The propellant tank for the flight-type feed system was fabricated

from tank halves identical to the ones used on the prototype system. The

_: end boss design was changed, however, to permit a full penetration weld

/ and to facilitate internal tank cleaning and inspection. No change was

_ made in the fabrication procedure. The end bosses were welded to the

_i tank halves end the welds X-rayed. The tank halves were then Joined by

_., a girth weld, which was also X-rayed. The tank was next solutio. -treated

-_i: and aged to T6 condition. Dye pen_-trant inspection was performed after

• :i_ heat treating. Finally, the tank was proof tasted at 320 pslg for i0

m

i_ minutes and then cleaned to TEW Specification PR2-2, Level i. _

66 _;
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TABLE 3. COMPONENT IDENTIFICATION

t

I. Propellant storage tank

2. Capillary tube assembly

3. ECCOBOND 57C solder

4. Lower mounting boss and fill valve adapter

5. Fill valve

6. Upper mounting boss

7. Storage tank pressure transducer

8. Propellant filter "

9. Regulator feed line

i0. Pressure regulator

Ii. Capillary tube outlet adapter

: 12. Capillary tube - plenum connecting llne

13. 1/4" female AN cross

14. 1/4" AN union

15. Resulator sense llne
t:

16. Thermocouple probe

17. Male 1/4" AN cross

18. Transducer connecting llne

+ 19. Regulated pressure transducer
k',

20. Plenum connecting line

? 21. Plenum tank

: 22. Vapor feed llne
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A problem was experienced in performing the girth weld on the tank.

The initial welding operation resulted in excessive buildup of weld

material on the interior of the tank, as well as areas of tungsten

inclusion in the weld. Rework of the various defective weld areas was

not i00 percent successful. Consequently, the tank was cut apart and

the weld area removed. The tank halves were then re-welded with no

further problems. The rework operation removed approxlmately 1 inch of

the cyllndrlcal middle section of the tank. The resultant tank volume

was 1600 cu. in. for the flight-type system, compared to 1780 cu. in.

for the prototype tank. This is equlvalent to a full tank (zero ullage)

load of 33.7 of ammonia at 100°F.
• , ....

A layout of the propellant storage tank is shown in Figu;-e 37. The

tank specifications are:

Medium Anhydrous ammonia

Volume 1600 In3

Weight 7.8 ib

Tank Material 6061-T6 Aluminum

Weld Material 4043 Aluminum

, Operating pressure 212 psia maximum

, Proof pressure 320 pslg

; Burst pressure 465 psia minimum

Temperature range 20° to lO0°Y

::: 6.i.2 Plenum Tank

_: A layout of the plenum tank is shown in Figure 38. The specifications

/ for thls tank are:

_'_? l-iedium Vapor phase amnonla

/ Volume 110 in 3
's'

} Weight 0.38 lb

Tank MaterAal 3003 aluminum

/_ Operating pressure 50 psia maximum

_ Proof pressure 75 psi8

Burst pressure 110 psi8 minimum

Temperature ranse 200F Co 100*F
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The spherical plenum tank was purchased from the Industrial Vessel

Division of Chicago Float Works. The tank was delivered in the annealed

condition. The strength characteristics of the non-hardened 3003 alloy

are sufficient to meet the requirements for this application.

6. I.3 Capillary Tubes

The capillary tubes used in the feed system have an internal diameter

of 0.017 inch and an external diameter of 0.033 inch. They are each 36

inches in length and are made of type 321 stainless steel. A total of

20 tubes are used in parallel. These dimensions are identical to the

tubes bonded to the prototype tank. The fittings at each end of the tube

bundle weze redesigned for uhe *_-o_1_°ht-typesystem. These are shown in

Figure 39 for the capillary-regulator interface and Figures 40a add 40b

for the capillary-plenum time interface. A reliable, leak tight assembly

is obtained in each case by individually brazing each of the capillary

tubes into the headers with Nicrobraze L. Final seal at each interface

is by an Buna N "O"-ring.

A final flow calibration of the tube assembly indicated no obstruc-

:- tions or restrictions in any of the tubes. The measured pressure drop

_" across the t_e assembly as a function of ammonia flow rate is shown in

; Figure 41. The tube assembly was cleaned to TRW Specification PR2-2,

Level 0.

_" The placement of the capillary tubes on the storage tank is shown in
?

: F%gures 42 and 43. The capillary tubes were bonded to the tank surface

....: with ECCOBOND solder 57C. The capillary tubes and the areas of the stor-
;/

i i age tank on which the epoxy was applied were cleaned with an ammonlum

:; blflourlde-nltrlc acid solution.

£'[

;[ 6. i.4 Propellant Filter

_:" A 15 micron absolute filter is connected directly to the outlet of

;,_i• the propell_nt tank. The filter, P/N 1524i--654, which is an in-llne,

_, screen type filter made entirely of noncorrosive steel, is manufactured

by Wintec Corporation. The filter is shown in Figure 44. The speclfi-

" cations'for it are: :

! .
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Figure 42. Tank and Flow Tubes, S_de View

;/

'_"" "14

Figure 43. Tank and Flow Tubes, End View /
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Medium Anhydrous ammonia

Eating 15 micron absolute

Effective screen area 8 in 2 minimum

Operating pressure 220 psig

Proof pressure 440 psig

Burst pressure 880 psig minimum

Element collapse pressure 250 psid minimum in flow direction

Cleanliness PR2-2, Level 1

6.i.5 Fill Valve

The storage tank fill valve, which can also be used as the drain

• valve, is shown in Figure 29. It is manufactured by Pyronet_cs, Inc.

The valve poppet has redundant seals. The primary seal is metal to metal.

The secondary seal is formed with an "O"-ring that seals the outer surface

of the poppet and an AN-cap that seals the flow passage in the center of

the poppet. The valve is operated manually with an open-end or torque

wrench. The valve specifications are:

I_dium Anhydrous ammonia

, Operating pressure Up to 4000 psig

': _ Closing torque 50 + 2 in-lb

"r: Leakage (primary) 1 x 10-5 scc/sec
.iT • .

i Material: body Aluminum

;'!'i" "O"-ring Buna S

_' 6.2 FLIGHT-TYPE SYSTEM TEST
• i

"" The feed system was subjected to a series of tests to determine its

: operating characteristics at various flow rates, duty cyc.les and propel-

•. lant pulse durations with both vapor and liquid phase ammonia leaving the

"!_'. storage tank. The objective of the tests was to determine the regulation

.;i':!'' capability and stability of the feed system over the ranges of operational

"_ duty cycles and environmental temperatures. The tests were conducted in

_. a vacuum environment within a system temperature range of 20°F to 100°F.

•:- 6.2.1 Test System

The components of the flight-type feed system are described in detail

in Section 6.1 of this report. The feed system was integrated into a

demonstration test system which, in addition to the system itself, included

81
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the required propellant distribution lines, flow control valves, pressure

and temperature monitoring and recording equipment, valve driver and pulse

command circuits, and a propellant flow meter. A schematic of the demon-

stration test system is shown in Figure 45.

In order to evaluate operation of the demonstration system in a

simulated space environment (except for the zero gravity field), the test

was performed in a vacuum environment. The vacuum chamber used for these

tests is a 4 foot long cylinder with dished ends. One end contains the

ports through which the tank is evacuated. The other end is a hinged

door with an "O"-rlng seal and a i0 inch view port. The cylindrical section

has three i0 inch flanged ports in which all the electrical and propellant

feed-throughs were located. Vacuum was maintained by a Stokes, Model

149H-I0, 80 CFM, mechanical pump. The pump had the capability of maintain-

ing a vacuum of less than ]0 microns in the chamber with no propellant

flow. However, with ammonia discharged into the chamber at the maximum

flow rate of 1 x 10-3 ib/sec, the pressure in the vacuum chamber increased to

0.2 psia. Chamber pressure was monitored with a dual channel thermo-

couple gauge and a differential pressure gauge.

Feed system temperature control was provided by two 500-watt flood

lights for the high temperature tests, and by liquid nitrogen cryo-

panels around the propellant tank for the low temperature tests.

, 6.2.2 Test Procedure

Following the assembly of the flight-type feed system, preliminary

_: checkout was performed with the storage tank charged to only a fractional

amount of its full capacity. The proper operation of the system was

thereby verified prior to the demonstration test.

_ The system demonstration test was conducted over a four week period.

_ During this time, system evaluation tests were performed to investigate
• operating characteristics under four separate modes of operation. The -

_-- tank contained maximumpropellant charge at the start of the demonstration

test.

_m
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i. System Operating Characteristics Under High Flow Demand

Flow rate: 1 x 10-3 lb/sec

Duty cycle: steady state for 300 seconds

Propellant Phase: vapor and liquid withdrawal

Propellant Temperature: 40°F and 100°F

2. System Operating Cha_acterlstlcs at Moderate Flow Demands

for Long Time Period

Flow rate: 3 x 10-5 lb/sec

Duty cycle: steady state for 8 hours

Propellant Phase: vapor and liquld withdrawal

Propellant Temperature: 70°F

3. System Operating Characteristics at High iulse Mode Duty Cycle

Flow ra_e: 1 x 10-3 Ib/sec

Duty cycle: 3Z for 2 hours

Propellant Phase: vapor and llquld withdrawal

Temperature: 40°F and IO0°F

4. System Operating Characteristics During Coast Mode

Flow rate: 5 x 10-4 lb/sec

Duty cycle: 0.2Z for two weeks

Propellant Phase: vapor and llquld witndrp'_al

Temperature': 70°F

i The demonstration test consisted of performing the first three modes, the

,. coast mode and then a repeat of the first thTee.

6.3 FLIGHT-TYPE SYSTEM TEST RESULTS

: 6.3.1 Preliminary Tests

_e propellant storage tank _as inltlally filled with approximately

5 pounds of ammonia. Prellmlna:-y check-out of the demonstration test

system was then conducted with vapor and llquld phase ammonia withdrawal

•_ from the storage tank. After initial exposure to mmonia, the flight-

type regulator exhibited a downward shift of its pressure regulation band

of approxlmately 0.5 psi. This regulatlon level change is caused by a ,,_

slight swelling of the elastomerlc seat, and occurs only after the

initial contact of the seat vltL _onla. The regulator was re-adjusted

to the original regulation set point. Test results for the prellmlna;..7 -_
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system flow tests are shown in Figure 46. _ne regulator lockup pressure

was set at 20.4 psia. Regulation level at the maximum flow rate

(i x 10-3 ib/sec) with vapor withdrawal was approximately 1.0 psi below

the lockup pressure. The regulated pressure starts to drop off at lower

propellant tank pressures xmtll the regulator is unable to maintain

regulation at the maximum flow rate for tank pressures below 62 psia.

This value corresponds to a saturated ammonia temperature of 34°F, and

is a significant improvement over the 70 psia limitation _xhlbited by

the prototype system. With liquid ammonia antering the pressure regulator,

the flight-type system exhibited its characteristic oscillatory behavior

: at flow rates in excess of 4 x 10-4 ib/sec. The oscillations were of

lower amplitude than those of the prototype regulator at comparable flow

rates. The amplitude of the oscillations increased with increasing flow

rate and also with decreasing tank pressure. The reason for these

oscillations has been previously discussed in Section 5.3.2.

_ At the conclusion of the preliminary flow tests, the storage tank

was drained of all residual anuaonia. Moisture was removed from the

._ internal volume of the system by applying a vacuum. The system was then

filled with dry argon prior to filling with ammonia. Charging of the

storage tank was accomplished by connecting the tank fill valve to the
_T

: liquid withdrawal tube of an ammonia supply cylinder. The flow control

._ valve was opened periodically to vent the vapor phase in the storage

:' tank. This venting malx_tained the pressure in the system tank below

_ that of the supply tank, and permitted liquid transfer due to the
..-_-

: pressure differential. During the filling procedure, the propellant tank

!i! was tilted at a 45 degree angle by rotating the feed system within the

;: holding frame. The filling process was terminated when llquid phase

,:,.: ammonia started to vent from the propellent tank. The onset of liquid

"' fl_ from the storage tank was determined by the oscillatory behavior

_ of the regulated preseure. The resultant tank charge was calculated

at 32 pounds of ammonia. The calculations were based on the know-

ledge of tank geometry, the tilt angle, and the propellant specific weight

at the temperature (approximately 50°F) existing during the filling pro-

cedt,re. The achieved weight had been chosen to provide a 10Z tank ullage

85
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at the temperature existing during the filling procedure. Thus, sufficient

space was available for propellant expansion when conditioned to the

elevated test temperatures.

6.3.2 Test Results for System Operating Under High Flow Demand

6.3.2. i Performance Requirement

The maximum system flow demand is 1 x 10-3 Ib/sec for a period of

300 seconds. The minimum temperature at which the maximum flow rate is

initiated is 40°F. The feed system is required to maintain the regu-

lated pressure at 20 + 2.0 psia under these conditions. However, based on

" the excellent regulation characteristics of the prototype system, the new

design goal was established at 20 + 1.0 psia.

6.3.2.2 Vapor Phase Withdrawal

Test runs with vapor phase ammonia supplied to the regulator were

_ conducted for 360 second time periods, or 60 seconds longer than the

maximum requirement. Test results at low temperature are shown in

Figures 47 and 48 for the initial and the final tests of the denonstra-

.. tion test period. The system was operated in the coast mode between the

.: initial and final test series. System performance for the two runs is

•:: identical. Regulator lockup is at 20.25 psia, the regulation level at

' 18.75 psia. The latter falls outside the 20 + 1.0 psia regulation goal

5: set for the feed system. However, it is well within the original require-

_ ment of 20 + 2.0 psia.

":.. Test results at high temperature are shown in Figures 49 and 50 for

: the initial and final performance tests. Lockup pressure and regulation

._ level are well within the design goal limits. The large drop in the

,_:, measured tank pressure, as shown in Figure 49, is caused by thermal

?: gradients existing within the propellant tank. These themal gradients

•:'!_, are caused during heating of the propellant within the storage tank.
.v'_

._ 6.3.2.3 Liquid Phase Withdrawal
4."

Test runs with liquid phase ammonia supplied to the regulator were

,: similarly conducted for 360 seconds. Test results at low temperature are

shown in Figures 51 and 52 for the tests before and after the coast mode

operation. Test runs were started with the propellant at 39eF. In each

87
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case, the regulated pressure oscillated at an approximate frequency of

1 Hz and peak-to-peak magnitude of 1.5 psia. The amplitude of the pressure

oscillations did not exceed the design goal limits. At the high propellant

temperature (IO0°F), the regulated pressure oscillations _ere reduced to

0.25 psi peak-to-peak. These test results are shown in Figures 53 and 54

for the tests befor_ and after the coast mode operation. Under no condi-

tions was there any indication of liquid ammonia emerging from the capillary

tubes. The average amount of propellant in the storage tank was approxi-

mately 27.0 Ib during the inltial high flow tests and 23.5 ib during the

final tests, corresponding to 77% and 68X of full tank capacity.

6.3.3 Test Results for System Operating at Moderate Flow Demands for

Lon_ Time Periods

6.3.3.1 Performance Requirements

The operating requirement for the system is that it must be capable

of maintaining a continuous flow rate of 3 x 10-5 ib/sec. The minimum

temperature at which this mode will be initiated is 25°F.

6.3.3.2 Vapor Withdrawal

The initial test at 3 x 10-5 ib/sec flow rate was initiated with the

propellant temperature at 62°F and continued for 8 hours. Test results

are shown in Figure 55. Regulated pressure was maintained constant at

,, 20.25 psia. A subsequent run was mede at an initial temperature of 24°F

and maintained for 18 minutes. Regulated pressure was maintained to,stunt

at 20.05 psia,which is lower than the ambient temperature test. Test

data are shown in FiEure 56. A final test was performed after the feed sys-

tem had been operated in the coast mode operation. The propellant tempera-

ture at initiation of the test was 18°F and the test duration 32 minutes.

% : Regulated pressure was maintained constant at 20.0 pals. These data are

._',_. shown in Figure 57.

_ 6.3.3.3 Liquid Withdrawal °

Test runs were also performed wi*-h liquid withdrawal from the tank

_ at the flow rate of 3 x 10-5 ib/sec. The test history for an eight hour _

run, started at 67°F, is shown in Figure 58. Regulated pressure level _

94
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changed gradually from 20.2 psia at the beginning of the test to 20.0 psia

at the end. Test results for a subsequent 30 minute test, started at 22°F,

are shown in Figure 59. Regulation level was constant at 19.8 psia. Test

results for the final test conducted after completion of the coast mode

operation are shown in Figure 60° Test duration was 30 minutes and

initiation temperature 220F. The amount of ammonia in the propellant

tank was 28.5 ib for the initial runs and 25.0 lb for the final run, or

' 81% and 68% of full tank capacity, respectively.

6.3.4 Test Results for System O_eratin 8 Characteristics at High Pulse

Mode Duty Cycle

6.3.4.1 Performance Requirements

As a typical requirement for this mode of operation, the system flow

demand has been determined to be a 3 percent duty cycle at a flow rate of

1 x 10-3 ib/sec and a flow ON-time of 0.10 second.

_ 6.3.4.2 Vapor Withdrawal

Test results for the pulsed flow operational mode are summarized in

_, Figures 61, 62, 63, and 64. The figures are for the cases of the

initial test at low temperature, initial test at high temperature, final

:_ test at low temperature, and final test at high temperature. The pressure

_;- regulator characteristics were quite similar in all cases. The regulator

_ lockup pressure was 20.25 psia, and the drop due to the flow demand was

_:;;, 1.0 psi at low temperature and 0.75 psi at high temperature. Pressure

. regulation was at all times within the design goal limits of 20 + 1.0 psia.

"-' In order to best utilize the timing circuits available to pulse the flow

_ control valves,a flow ON time of 0.3 second was selected to match the

_: requirement for a 3% duty cycle.

_ Test period for each of the test conditions was two hours. The data

presented in Figures 61 through 64 is typical for the entire time period.

• :_',_.
6•3.4.2 Liquid Withdrawal "L

:.. y

With liquid withdrawal under pulsed operation at high temperature, the

feed system exhibited no difficulties in meeting the pressure regulation design ,_

_oal of 20 + 1.0 psia. Data for these tests is showu in Figures 65 and d

101 i_
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66 for the tests conducted before and after the coast mode operation.

The lockup pressure was somewhat higher than with vapor withdrawal

(20.5 psla versus 20.25 psla); however, the drop in pressure durlnR

the flow pulse was only about 0.6 psi.

Test results at low temperature are shown in Figures 67 and 68 (before

and after the coast mode test). Operation in the pul-_ mode with an ON-

time of 0.3 second caused the system to go to high lockup pressure,

exceeding the design goal limits, as well as the original regulation

requirement of 20 +_ 2.0 psla. It should be noted that the high lockup

occurred only on alternate pulses. Whenever the flow command was initiated

from high lockup, the propellant demand was met entirely by the plenum

_. tank. The plenum pressure did not decrease below the set point of the

regulator, which stayed closed for that cycle. On the following c_ _nand

the regulator opened and a substantial amount of liquid -mmonia was

introduced into the capillary tubes. Vaporization of this ammonia then

forced the plenum pressure to high lockup, and the cycle repeated.

]{eduction of the pulse duration to 0.2 second reduced the maximum lockup

within the 20 + 2.0 psia limits but not within the design goal of 20 +
%-

_ 1.0 psla. Further reduction of the ON-t_ae to 0.i second did reduce the
t.,!:,

:" regulation extremes within the design goal range of 20 + 1.0 psia. The¢,.j

• regulator cycled at each flow command. The plenum pressure never reached

..... a value from which a flow step would be initiated without decreasing the

"- plenum pressure below the set point of the regulator. Consequently,
i_•

whenever the regulator opened, the liquid ammonia entering the capillary

.-_, tubes was limited to an amount such that its resulting vaporization never

" caused the plenum pressure to exceed the maximum design goal for the

!_ lockup pressure.

._ The above described behavior is the case for the specific size .

"!-_ plenum tank included in the feed system. Increase of the tank size would -:

_?,. decrease the pressure swlngs due to liquid vaporization in the capillary

.:' tubes. This would permit system operation at pulse lengths in excess of

f 0.I second and still adhere to the 20 + 1.0 psi design goal limits.

1.
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When the pulse duration was shortened to less than 0.3 second ON-

time, it was not possible to maintain the desired duty cycle of 3 percent

because of the minimum attainable cycle time of I0 seconds with the par-

ticular test equipment. It is evident, however, that the ability of the

system to meet the regulation requirements is more critically dependent

on the pulse duration than it is on the repetition rate. The regulation

capability will be determined by the pulse duration as long as there is

sufficient time for the system to reach normal lockup between pulses.

6.3.5 Test Results for System Operating Characteristics at the

Coast Mode Dut 7 Cycle

6.3.5.1 Performance Requirements

The feed system is required to perform continuously in the coast

mode duty cycle. This is defined in the test plan as pulsed mode operation

at a 0.1% duty cycle with the flow ON-time of 0.i0 second and a maximum

_; flow of 1 x 10-3 ib/sec.

6.3.5.2 Test Results

The demonstration system was operated in the coast mode duty cycle

- for a total of 250 hours. The propellant tank was positioned for liquid.j,

.: phase ammonia withdrawal during daytime hours, but changed to vapor

•:: withdrawal for overnight and weekend operation. This schedule allowed

_9_: the system to be closely monitored when operated with liquid withdrawal,

.... and left unattended with vapor. The purpose was to prevent an unprogrammed

• :'-: and unobserved flow demand caused by test equipment failure while operating[;

":_ with liquid ammonia. Such a failure would have resulted in large amounts

•" of liquid ammonia downstream of the capillary tubes. A similar failure

with vapor withdrawal, if left unobserved, would only result in a large

.. amount of ammonia being withdrawn from the storage tank. Actual flow
,_'

._ condition during the coast mode testing were 5 x 10-4 Ib/sec flow rate

:,::;,, with a 0.2X duty cycle consisting of a 50 ms ON-time every 25 seconds. The

_ lower flow rate was used because this was the maximum attainable through

the valve used to pulse propellant flow during the coast mode. The duty

cycle was increased so that the required amount of propellant would be

113 ._
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expelled. Figure 69 shows typical test data with liquid and vapor with-

drawal from the propellant tank at the beginning of the coast mode

operation. Figure 70 shows similar data at the end of the test. Regu-

lator lockup is 20.2 psia with either phase ammonia entering the regulator.

The pressure regulator cycled with each individual flow command. The

pressure regulator was subjected to a total of 55,340 flow commands during

the coast mode.

6.3.6 Special Tests

Limited testing was performed to investigate the system operational

characteristics when operated under conditions more demanding than those

stated in the requirements. The results of some of these tests have been

described in previous paragraphs. The maximum flow rate tests_ for one_

were continued for 60 seconds past the system requirement of 300 seconds_

and the long time-period moderate flow demand tests were initiated as

low as 18°F (25°F was the minimum requirement).

The regulation capability was further investigated at lower temper-

_ atures. Additional tests were performed with the propellant temperature

at 2°F (32 psia tank pressure). With vapor phase a_monia withdrawn from

• the propellant tank, the system was able to maintain a 3 x 10-4 ib/sec

_;. flow rate at a regulated pressure of 19.0 psia. When the flow rate was

;_i increased to 4 x 10-4 ib/sec, the regulation requirement could not be

maintained and the plenum pressure dropped to 13.5 psia. During pulse

,:_:, mode operation, the system was capable of responding to 0.2-second

duration flow commands at a flow rate of i x 10-5 ib/sec, while main- ,7

" tainlng the regulated pressure within 20 + 1.0 psia. Increase of the

/{_": pulse duration to 0.3 second resulted in the plenum pressure decrease

:_ to 18.7 psia during the pulse.

_:_ Similar tests were conducted with the propellant tank rotated to the :_

;!_;' liquid wlthdrawal mode. The propellant temperature was 0°Y (30.5 psia tank

:',_," pressure). The feed system was subjected to a 300 second duration flow

_ demand at 3 x 10-5 ib/sec, followed by 60 second duration flows at

_, 1 x 10-4, 1.5 x 10-4, 2 x 10"4, 2.5 x 10-4, and 3 x 10-4 ib/sec. Initial

regulated pressure (at 3 x 10-5 ib/sec) was steady at 19.8 psla. At the

higher flow rates the regulated pressure started to oscillate at approxl-

mately 0.25 Hz and a peak-to-peak magnitude of 0.7 psla. The test

sequence was terminated when it appeared that liquid ammonia might be

leaving the capillary tubes. 114
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6.3.7 Test Summary

The chronological summary of the test conducted during the demon-

stration test is presented in Table 4. Included in the table are the

flow rate_ duty cycle and duration for the various tests_ as well as

propellant temperature and pressure, individual and cumulative ammonia

usage, and individual and cumulative number of pressure regulator cycles.
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7. ZERO GRAVITY SIMULATION TESTS

A simulated zero-gravity heat transfer test was performed to verify

the propellant flow times that could be sustained at the maximum flow

rate. A schematic of the test system is shown in Figure 71. The proto-

type feed system components were used in this test. The test layout

similar to that used in the prototype system test, but with certain

modifications. In this test, the prototype feed system propellant tank

was filled with a glycerlne-water mixture, while liquid phase ammonia

was supplied from a separate tank. The glycerlne-water mixture

used in the propellant tank, on which the capillary tubes were bonded,

contained 55 percent glycerine by weight. This mixture was selected

because it has a specific combination of physical properties character-

istic of ammonia and also a high kinematic vlscocity. The physical

property combination simulates the _ term of Equation (5). In terms

of individual properties, this facEor k is:

k = _¢p )

It can be seen from Equation (5), that by duplicating this factor, the

5 temperature variation of the storage tank wall will be nearly the same

for the mixture as for liquid ammonia. This similarity condition will

not apply at points away from the tank wall; however, it is only the

wall temperature profile that must be duplicated for determining flow

" Cimes. The heat transfer factor for -mmonla and the glycerlne-water

': mixture, as a function of temperature, is shows in Tigure 72. At 40°F,

": the heat transfer factors agree to within approximately 4.5 percent.

The relatively high kinematic viscosity of the glycerine-water

_. mixture diminishes the extent to which natural convection will occur in

_ a system. The square of the ratio of kinematic viscosity of the

•_: glycerlne-water mixture to that of liquid ammonia as a function of

temperature is shown in Figure 73. The ratio of total heat transfer

to that of conduction, _, within a system is inversely proportional to

the square of kinematic viscosity. Total heat transfer includes the

contribution from both conduction and convection. The correlation para-

meter for determining _ is the product,
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(NGr • Npr)

whe re

• NGr = Grashof Number

= BgAT L3
2

u

8 = coefficient of thermal expansion

g = gravitational constant

AT = temperature differential

L = characteristic length

u ffikinematic viscosity

Npr = Prandtl Number

-52
k

C = specific heat
P

= absolute viscosity

k = thermal conductivity

For the product N_ • N_ < 103 , the heat transfer is approximately
ur Yr- (2_

"_ that due to conduction alone: " The value of this product for the test

. system during the test conditions was less than 500.

_-- The tests were conducted by first allowing the storage tank con-

taining the glycerine-water mixture and capillary tubes, the liquid

_, _m_nia storage vessel and the regulator to attain thermal equilibrium.

_.. Propellant flow was then initiated and adjusted to i x 10-3 ib/sec. The

propellant flow was terminated when the delivery pressure limits became

erratic. This indicated that a small, but finite quantity of liquid

., phase ammonia was leaving the capillary tubes. The confirmation of

liquid phase in the capillary tube exhaust was made after termination

_ of flow. This was done by noting the pressure rise in system plenum.

il A rise in the plenum pressure in excess of that attributed to thermal

effects would indicate the presence of liquid in the downstream system.

Total pressure rise above normal regulator lock-up was approximately

3 psi for those runs in which liquid was exhausted.
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The time-temperature profiles of the tests are shown in Figures

74, 75, and 76. Identification of the thermocouples is shown on the

schematic in Figure 71. The tests with start temperatures of 46.5°F

and 32.3°F were terminated at the time there was indication of liquid

phase in the ammonia exhaust from t__ecapillary tube. The flow times

were 738 seconds at a start temperature of 46.5°F and 162 seconds at

32.3°F. The 66°F test was terminated after i0 minutes. There was no

indication of liquid exhaust during this test. A curve of these flow

times is shown in Figure 77. There is fair agreement between the

experimental and analytical data at the critical design temperature of

40°F. The system exhibits the capability of maintaining a flow rate

of 1 x 10-3 ib/sec for a period in excess of 400 seconds when the initial

temperature is 400F.

.4'.
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8. CONCLUSIONS AND RECOMMENDATICNS

The results of the program successfully demonstrated the feasibility of

using a simple, pneumatlcally-regulated_ ammonia feed system for propulsion

applications aboard zero-gravity spacecraft. The experimentally-verified

simplicity and performance of the system closely-approxlmate thu character-

istics of conventional "cold" gas feed systems at a similar stage of

development. The system appears to be sufficiently well-developed to be

considered for entry into a long-duration demonstration test and an environ-

mental qualification program. Additional development efforts could be

devoted toward incorporation of more sophisticated fabrication and assembly

.- techniques.
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9. NEW TECHNOLOGY

The technology used during the progre8_ of this program was delineated

in the proposal submitted prior to initiation of the program. There was

no new technology generated or required for the completion of this program.
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APPENDIX I. FLIGHT REGULATOR DRAWING LIST

DRAWING NUMBER TITLE

SK4727-69-243 Regulator, An_onia Thruster

227 Fitting

228 Retainer

229 Plate, End

190 Diaphragm

230 Plate, Diaphragm

231 Plate, Spring

232 Cup, Spring

195 Stop

193 Retainer, Spring

194 Spring, Compression

233 Nut, Adjusting

234 Body

235 Nut

" 236 Housing, Stem

237 Sleeve

_i_ 238 Washer

239 Ring, Clamp

_." 202 Poppet

_' 241 Seat

:'_. 242 Header
,4"

: 204 Nut

_, ,¢ .
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APPENDIX II. REGULATOR DEVELOPMENT TEST PLAN

i. INTRODUCTION

The testing outlined in this plan provides an evaluation of the

functional characteristics of the regulator prior to assembly in the

ammonia feed system. Tests are conducted using gaseous nitrogen for

regulator operation. The tests involve separate characterization and

optimization of the diaphragm, loading springs and the poppet seal.

Finally, the complete regulator is pneumatically flow-tested in a test

loop simulating the ammonia system. Flow rates simulating the predicted

range of liquid and gaseous ammonia volumetric flows are applied over an

inlet pressure range of 50 to 210 psi. Established standard acceptance

proof, leakage, and flow tests are used.

2. TEST CONDITIONS

Pressure

Inlet operating pressure: 50 to 210 psia

Regulated outlet pressure (nominal): 20 psid

Adjustable from 20 to 35 psld

Proof: 315 psia inlet

55 psia diaphragm ""

External leakage (total): I x 10-5 scc/sec GHe

Internal leakage at lookup: 0.3 scc/hr GN 2

Flow range

Maximum flow: 68 SCFH GN 2 at 66 psia

inlet pressure

Minimum flow: 2 SCFH GN 2 at 210 psig

inlet pressure _

• Temperature: Laboratory ambient

.J

II-i j
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i 3. TEST REQUIREMENTS

I
3.I DEVELOPMENT TESTING

3.1.1 FunctionDiaphragm

i
: Assemble diaphragm and loading spring assembly. Install in test

setup, shown in Figure 78.

a. Pressure strength

Apply proof pressure, inspect for damage or change in dimension.

b. Effective area over operating range

Measure force output relative to diaphragm position and applied

pressure•

c. Hysteresis
°-.

Measure force output variation with direction of diaphragm motion

3.1.2 Poppet Valve F_mction

a. Seal friction

Measure shaft seal frictionwlth and without pressure.
•<

b. Poppet pressure unbalance ,:

Measure unseating force required as a function of pressure.

:- c. Poppet leakage

_:.. Measure nitrogen and helium leakage rates• '_

:_ 3.1.3 Regulator Performance
..:-._

•_> Completed regulator asqembly. Install in flow test system, Figure 79.

Establish the regulator pressure control characteristics over the follow-

,,; ing range of conditions:

_'%' a. Calibration range -

Determine attainable control pressure over the spring adjustment

'_'_ " range.
_2_: ..
_ b Effect of inlet pressure variation on regulation

"_:_';' Observe the effect of varying the inlet pressure over the •

'_:_' operating range on regulated pressure. _._

"'_i:; c. Effect of flow rate on regulation "i_

Vary the nitrogen flow by adjusting the downstream metering

"_ valve. Observe the effect on regulated pressure. _

II-2 i_
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d. Effect of varying simulated capillary restriction

With the downstream metering valve set at a nominal flow,

observe the effect on regulation of throttling the capillary

metering valve.

e. Stability and lockup pressure

Determine the effect of opening and closing the downstream

solenoid valve on regulated pressure by varying the metering

conditions as in paragraphs c and d above. Observe stability

characteristics and lockup pressures.

3.2 ACCEPTANCE TEST

The following tests will be applied when required to establish

normal operation of the regulator prior to installation on the ammonia

system. 8,

a. Pressure calibration

With the regulator installed in the flow system, Figure 79, set

regulated pressure as required.

b. Lockup and restart

By operating the downstream solenoid valve, determine normal

lockup and restart characteristics.

• c. Proof
L

_* Apply proof pressure to the valve and diaphragm assemblies,

_ respectively. Hold for two minutes. Observe damage or permanent

!__, deformation.

_ d. Internal leakage

Determine nitrogen leakage through the valve poppet on lockup.

e. External leakage

"' Determine helium leakage by the mass spectrometer bell Jar

_: method.

• _e_

II-5
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APPENDIX III. PROTOTYPE REGULATOR ACCEPTANCE TEST PROCEDURE

TEST SCHEDULE

a. Pressure calibration

(Regulator is installed in test system shown in Figure 80.)

With a flow rate of 2 SCFH at an inlet pressure of 210 psig,

set the regulated pressure at 20 _ .05 pslg.

Regulated pressure 20.05 psig.

b. Lockup pressure

Wlth flow set at 68 SCFH and at an inlet pressure of 210 pslg,

shutoff downstream solenoid valve. Lockup pressure shall not

exceed 0.6 psi above regulated pressure set at Step a.

Maximum allowable lockup pressure: 20.65 psig.

Observed lockup pressure: 20.4pslg.

c. Proof pressure

Apply specified gaseous nitrogen proof pressure separately

to diaphragm and valve assemblies of regulator. Hold pressure

for 2 minutes. No damage or yielding allowable.

Required Pressure Time
Pressure PSIG Min.

PSIG

Diaphragm 55 55.0 ._

Valve 315 315.0

d. Internal leakage

(Regulator is installed in test system shown in Figure 81.)

Apply 25 psig gaseous nitrogen to the regulator diaphragm and

210 psig to valve inlet. With valve outlet tube immersed in ,,

distilled water, observe leak rate over 30-mlnute period.

Leakage: 0.0cc/hr.

e. External leakage

(Regulator is installed as shown in Figure 82.) - :

Pressure leakaKe

Install regulator in bell Jar. Separately leak check the

"r

diaphragm then the valve asse ,bly to noted pressures with helium. .

Observe for 3 minutes for each test using mass spectrometer, il

Ill-i '__
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Required Pressure Leakage
Pressure PSIG Std. cc/sec

Helium

Diaphragm 35 35.0 68 x i0-8

Valve 210 210.0 30 x 10 -8

f. Pressure-drop test

(Regulator is %nstalled in test setup as shown in Figure 83.)

With regulator held at a constant inlet pressure flow gaseous

nitrogen through the unit at the following flow rates:

Inlet Pressure PI-PSIG Flow-SCFH Pressure Drop

Reqd. Actual Reqd. Actual PSI____DD

51 lO 1o.o
51 51...._0 20 20.___O0 Negligible

51 51.0 30 30.0 0.5

51 51.0 40 40.0 1.2

51 51.0 50 50.0 1.9

' 51 51.0 60 60.0 2.9
m m

51 51.0 68 68.0 3.7 ,m

51 51.0 70 70.0 4.0
m m

•51 51.0 80 80.0 5.2
m _ m

g. Repeat St_p a.

Regulated pressure: 20.05 psi 8.
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APPENDIX IV. FLIGHT REGULATOR ACCEPTANCE TEST PROCEDURE

TEST SCHEDULE

a. Pressure calibration

(Regulator is installed in test system shown in Figure 80.)

With a flow rate of 2 SCFH at an inlet pressure of 210 psig,

set the regulated pressure at 20 + ,05 psig.

Regulated pressure: 20.00 psig.

b. Lockup pressure

With flow set at 68 SCFH and at an inlet pressure of 210 psig,

: shutoff downstream solenoid valve. Lockup pressure shall not

exceed 0.6 psi above regulated pressure set at Step a.

Maximum allowable lookup pressure: 20.60 psig.

Observed lookup pressure: 20.30 psig-

c. Proof pressure

Apply specified gaseious nitrogen proof pressure separately

to diaphragm and valve assemblies of regulator. Hold pressure

for 2 minutes. No damage or yielding allowable. :i_

Required Pressure Time

:.- Pressure PSIG Min.
_., PSIG
_.

, Diaphragm 55 55.0 2.

_ Valve 315 315.0 2'

_J: d. Internal leakage

: (Regulator is installed in test system shown in Figure 81.)

•_- Apply 25 psig gaseous nitrogen to the regulator diaphragm and

_ 210 psig to valve inlet. With valve outlet tube immersed in

:,:, distilled water, observe leak rate over 30-minute period.
:j -

_ Leakage: 0.O cc/hr

_ e. External leakage

_": (Regulator is installed as shown in Figure 82.)

.;. Pressure leakase _=i,_
Install regulator in bell Jar. Separately leak check the

diaphragm then the valve assembly to noted pressures with __,_

helium. Observe for 3 m_nutes for each test using mass _i_

spectrometer. ,__.

IV-i _
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Required Pressure Leakage
Pressure PSIG Std. cc/sec

PSIG Helium

Diaphragm 35 35.0 8.7 x 10-7
, L" ''

Valve 210 210.0 1.4 x 10-5

Vacuum leakage

Connect helium leak detector to the diaphragm reference fitting.

Apply a vacuum through the leak detector. Flood helium around

the regulator. Record the observed leakage.

Observed leakage: 8.7 x 10-8 std. cc/sec, helium.

f. Pressure drop test

(Regulator installed in test setup as shown in Figure 83.)

With regulator held at a constant inlet pressure flow gaseous

nitrogen through the unit at the following rates:

Inlet Pressure PI-PSIG Flow-SCFH Pressure Drop

Reqd. Actual Reqd. Actual PSID

51 51.0 i0 10.0 Negligible

51 51.0 20 20.0 .15 _°

51 51.0 30 30.0 .35

51 51.0 40 40.0 .7

51 51.0 50 50.0 1.0

51 51.0 60 60.0 1.5

i 51 51.0 68 68.0 I.9

51 51.0 70 70.0 2.0

51 51.0 80 80.0 2.6

g. Repeat Step a.

Regulated pressure: 20.00 pslg.
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